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We report on the rich dynamics of two-dimensional fundamental solitons coupled and interacting on the top of
an elliptical shaped potential in a two-dimensional Ginzburg–Landau model. Under the elliptical shaped poten-
tial, the solitons display unique and dynamic properties, such as the generation of straight-line arrays, emission
of either one elliptical shaped soliton or several elliptical ring soliton arrays, and soliton decay. When changing
the depth and sharpness of the external potential and fixing other parameters of the potential, various scenarios
of soliton dynamics are also revealed. These results suggest some possible applications for all-optical
data-processing schemes, such as the routing of light signals in optical communication devices.
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As a class of universal models, complex Ginzburg–Landau
(CGL) equations have drawn a great deal of attention in
the physics and applied mathematics communities. These
equations have been widely applied in nonlinear optics,
fluid dynamics, the Rayleigh–Bénard convection, chemi-
cal waves, second-order phase transitions, superconduc-
tivity, Bose–Einstein condensation, quantum field
theories, and so on[1–6]. As a dissipative extension of the
nonlinear Schrödinger equation, the CGL equation exhib-
its a broad range of unique and dynamic behaviors, rang-
ing from chaos and pattern formation[7] to dissipative
solitons[8]. Whereas conservative solitons form continuous
families of localized solutions, dissipative solitons are as-
sociated with certain discrete values of the parameters
that satisfy the energy balance condition. Moreover, dis-
sipative solitons, including dissipative gap solitons and
localized vortices, can stabilize in both a two-dimensional
(2D) and three-dimensional (3D) CGL equation with
cubic–quintic (CQ) nonlinearity[9–12]. Recently, studies
on dissipative spatial soliton dynamics supported by ex-
ternal potentials have excited a great deal of interest,
and the unique dynamic regimes of dissipative spatial sol-
itons in one-dimensional (1D) and 2D CGL equations with
CQ nonlinearity were reported[13–16]. In conservative mod-
els, spatial solitons split using an external potential in a
2D nonlinear Schrödinger equation with CQ nonlinearity
and a sharp grating potential in the form of the Kronig–
Penney lattice, also know as a “checkerboard” potential,
have been investigated[17]. Very recently, dissipative spa-
tial solitons in 2D and 3D CGL equations with gain
and loss were theoretically investigated[18–29]. However,
the previous studies[15] were focused on the dissipative
spatial solitons that are trapped or controlled by the

external potential and possess the same effect in every
direction. Based on this ideal, we consider the elliptical
potential (EP) having different effects in some directions.
This setting also gives rise to new, dynamic effects. In this
Letter, we theoretically reveal the rich dynamics of dissi-
pative spatial solitons in the 2D CQ CGL model with EP.
With the interaction of the input soliton and the EP, the
dissipative spatial solitons show their rich dynamics.
When changing the axis length ratio or the beam width,
the various scenarios of soliton dynamics are also revealed
for the given sharpness and the depth of the EP.

The general form of the 2D CQ CGL equation for the
electromagnetic field uðx; y; zÞ in the optical medium can
be described by

iuz þ
1
2
Δu þ juj2u þ νjuj4u

¼ iδu þ iβΔu þ iεjuj2u þ iμjuj4u þ Vu; (1)

where Δ ¼ ∂2∕∂x2 þ ∂2∕∂y2 is the 2D transverse vector
Laplacian, z is the propagation distance, and ν < 0
accounts for the quintic self-defocusing coefficient. δ is
the linear loss or gain coefficient, μ characterizes the
quintic-loss parameter, ε is the cubic-gain coefficient,
and β accounts for effective diffusion (viscosity) or angular
spectral filtering in the medium. The last term in Eq. (1)
represents the effect of external potential on the light
wave. As a typical example, we concentrate on the EPs
of V ðx; yÞ ¼ prn, where p denotes the depth of the
potential, n determines the sharpness of the potential,

r ¼
���������������������������������
x2∕M 2 þ y2∕N 2

p
, and M and N stand for the long

axis and the short axis of the ellipse, respectively. Here,
we select the Gaussian beam as the input, which is
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described by u ¼ A exp½−ðx2 þ y2Þ∕ð2w2
x;yÞ�, where A is

the input amplitude and wx;yð¼ 1.25Þ denotes the beam’s
width, except where otherwise noted. During the calcula-
tions, we select the generic case for the set of parameters:
A ¼ 1.64, δ ¼ −0.5, β ¼ 0.5, ν ¼ −0.01, μ ¼ −1, and
ε ¼ 2.5. The numerical simulations are performed using
the split-step Fourier method[30–32].
The robustness of the solitons is tested in direct simu-

lations of Eq. (1), with the initial condition multiplied by
[1þ ρðx; yÞ], where ρðx; yÞ is a Gaussian random function

where hρi ¼ 0 and hρ2i ¼ σ2. The adopted σ is equal to
10% of the soliton amplitude. For this case, the stable sol-
iton solution was obtained using the split-step Fourier
method [see Fig. 1(a)]. First, we analyze the propagation
dynamics of solitons with various sharpness parameters n
for the given parameters, namely, p ¼ 3, M ¼ 2, and
N ¼ 5 of the EP. For the small and moderate sharpness
parameters where n ¼ 0.1, the EP is very weak, and the
input soliton is localized on the top of the potential [see
Fig. 1(b)]. This is because when the potential is weak,
the soliton localization is attributed to the viscous effect
that prevents the soliton from falling from the top of po-
tential. This effect obviously differs from that of other
well-known models, in which the light beam is easily re-
pulsed at the higher value of the potential well. As the
sharpness parameter n of the EP is increased to 0.2 or
0.3, the straight-line arrays can be observed on the second
and third lines in Fig. 1(b). Both demonstrate that the EP
can provide a continuous source of energy necessary for
this, and that the stronger the potential is, the higher
the emission rate. As the sharpness of the EP is strong
enough, the solitons form a single elliptical ring soliton.
During propagation, the elliptical ring soliton gradually
expands under the push force of the EP. The expanding
velocity of the elliptical soliton ring depends on the sharp-
ness, depth, and ratio of the long axis over the short axis of
the potential. As the sharpness and depth of the EP in-
crease, the push force becomes larger, and the elliptical
soliton ring expands faster and forms the elliptical soliton
arrays. The potential is further increased, and then the
solitons decay and lose a large amount of energy. As a re-
sult of our extensive numerical simulations, the regions of
different soliton dynamics can be obtained by varying n
and p, as shown in Fig. 2. The soliton dynamics include
soliton localization, soliton straight-line arrays, solitons
evolving into either one elliptical ring soliton array or a
set of elliptical ring solitons, and soliton decay.

Notice that in the present work, the elliptical shaped
potential gives rise to new and dynamic effects for the
variety of long and short semi-axes. Figure 3 shows the

Fig. 1. (a) Stable soliton solution in Eq. (1). (b) Soliton dynam-
ics for various sharpnesses (from top to bottom: n ¼ 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) of the elliptical shaped potential
when p ¼ 3 for M ¼ 2 and N ¼ 5. The transverse domain is
ð−50; 50Þ× ð−50; 50Þ.
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Fig. 2. Regions of different soliton dynamics in the plane (n, p)
when M ¼ 2 and N ¼ 5. In region A, for soliton localization; in
region B, for soliton straight-line arrays; in regions C and D, for
soliton evolution into one elliptical ring soliton array and a set of
elliptical ring solitons, respectively; in region E, for soliton decay.
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propagation dynamics of solitons with various long and
short semi-axis parameters for the given sharpness param-
eters, namely, n ¼ 0.5, 0.6, and 0.7 from the top and bot-
tom in every figure. In Fig. 3(a), the elliptical soliton ring
gradually expands during propagation, and the solitons
are emitted and form soliton arrays for n ¼ 0.5, M ¼ 3,
and N ¼ 5. By increasing the sharpness parameter n, a
single soliton is completely excited from the elliptical sol-
iton ring under the push force of the EP. For the same
sharpness, the solitons form easily when N ¼ 6. However,
some solitons decay as the transmission distance increases,
as shown in Fig. 3(b). When the long axis is increased to
N ¼ 7 or N ¼ 8, the propagation dynamics of the solitons
are similar to those in Fig. 3(a), but the number of solitons
is greater when N ¼ 7 and n ¼ 0.6. According to above
results, one can see that for the given sharpness and depth
of the EP, the ellipse has an optimal ratio of a long ellip-
tical axis over the short axis, which is helpful for the for-
mation of solitons and soliton arrays. For the given
sharpness and depth of the EP, the soliton spreads out
into an elliptical soliton ring and forms into a single soliton
in the gray region. However, it cannot split into a single
soliton and soliton arrays in the white region, as is shown
in Fig. 4.

Obviously, not only the slope and the depth parameters
of the EP but also the parameters of the solitons signifi-
cantly affect the soliton dynamics. Figure 5 displays the
dynamic properties of the solitons arrays for the solitons’
width ðwx;y ¼ 8Þ and given sharpness parameters, namely,
n ¼ 0.5, 0.6, and 0.7 from top to bottom in every figure.
The solitons can be emitted from a cluster of elliptical
ring-shaped patterns even if the EP is weak [see Fig. 5(a)].
As the sharpness of the EP grows stronger and sharper,
the soliton is divided into a cluster of elliptical ring solitons
[see Fig. 5(b)]. The interesting dynamics demonstrate
that the stronger the sharpness parameter n of the EP,
the more the elliptical ring expands. In addition, the gen-
eration rate of the solitons increases as the value of n
increases. When the depth of the EP is too deep, the
solitons are split into soliton arrays, but some solitons
decay and lose too much energy during propagation [see
Fig. 5(c)].

Fig. 3. Soliton dynamics for various sharpnesses (top: n ¼ 0.5,
middle: n ¼ 0.6, bottom: n ¼ 0.7) of the elliptical shaped poten-
tial when p ¼ 3 for M ¼ 3 and (a) N ¼ 5; (b) N ¼ 6; (c) N ¼ 7;
(d) N ¼ 8. The transverse domain is ð−60; 60Þ× ð−60; 60Þ.

4 6 8

2

4

6

M

N

Fig. 4. Regions of dynamic regimes in the plane (M , N ) when
p ¼ 3 and n ¼ 0.6.
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In conclusion, we investigate the dissipative spatial sol-
itons in the CQ complex CGLmodel with elliptical-shaped
potentials. The presence of the EP gives rise to some in-
teresting dynamics, including straight-line arrays, the
emission of either one elliptical shaped soliton array or sev-
eral elliptical ring soliton arrays, and soliton decay. In the
case of the EP, if the sharpness and depth of the EP are
enough strong, the soliton gradually evolves into either
one elliptical ring soliton array or a set of elliptical ring
solitons with soliton decay. If the sharpness and depth
of the EP are moderate, the soliton presents itself in
straight-line arrays. If the potential is weak, the solitons
cluster on top of the EP. In addition, when the soliton
width becomes wider, a cluster of elliptical ring solitons
can be obtained for different sharpnesses of the EP.
Our results suggest some potential applications, such as
routing light signals, all-optical data-processing schemes
in optical communication devices, and dynamic and sta-
tionary ring-like beams in nonlinear dissipative media.
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Fig. 5. Soliton dynamics for various sharpnesses n = (a) 0.5,
(b) 0.6, and (c) 0.7 of the tapered-elliptical potential when
p ¼ 1 for M ¼ 2 and N ¼ 5. The transverse domain is
ð−60; 60Þ× ð−60; 60Þ.
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